Journal Article

Multiscale probability mapping: groups, clusters and an algorithmic search for filaments in SDSS

Anthony G. Smith, Andrew M. Hopkins, Richard W. Hunstead and Kevin A. Pimbblet

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 422, issue 1, pages 25-43
Published in print May 2012 | ISSN: 0035-8711
Published online April 2012 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2012.20400.x
Multiscale probability mapping: groups, clusters and an algorithmic search for filaments in SDSS

Show Summary Details

Preview

We have developed a multiscale structure identification algorithm for the detection of overdensities in galaxy data that identifies structures having radii within a user-defined range. Our ‘multiscale probability mapping’ technique combines density estimation with a shape statistic to identify local peaks in the density field. This technique takes advantage of a user-defined range of scale sizes, which are used in constructing a coarse-grained map of the underlying fine-grained galaxy distribution, from which overdense structures are then identified. In this study we have compiled a catalogue of groups and clusters at 0.025 < z < 0.24 based on the Sloan Digital Sky Survey (SDSS), Data Release 7, quantifying their significance and comparing with other catalogues. Most measured velocity dispersions for these structures lie between 50 and 400 km s−1. A clear trend of increasing velocity dispersion with radius from 0.2 to 1 h−1 Mpc is detected, confirming the lack of a sharp division between groups and clusters. A method for quantifying elongation is also developed to measure the elongation of group and cluster environments. By using our group and cluster catalogue as a coarse-grained representation of the galaxy distribution for structure sizes of  Mpc, we identify 53 filaments (from an algorithmically derived set of 100 candidates) as elongated unions of groups and clusters at 0.025 < z < 0.13. These filaments have morphologies that are consistent with previous samples studied.

Keywords: methods: statistical; catalogues; surveys; galaxies: clusters: general; galaxies: groups: general; large-scale structure of Universe

Journal Article.  13089 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.