Journal Article

Cold accretion flows and the nature of high column density H <span class="smallCaps">i</span> absorption at redshift 3

Freeke van de Voort, Joop Schaye, Gabriel Altay and Tom Theuns

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 421, issue 4, pages 2809-2819
Published in print April 2012 | ISSN: 0035-8711
Published online April 2012 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2012.20487.x
Cold accretion flows and the nature of high column density H i absorption at redshift 3

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

Simulations predict that galaxies grow primarily through the accretion of gas that has not gone through an accretion shock near the virial radius and that this cold gas flows towards the central galaxy along dense filaments and streams. There is, however, little observational evidence for the existence of these cold flows. We use a large, cosmological, hydrodynamical simulation that has been post‐processed with radiative transfer to study the contribution of cold flows to the observed z= 3 column density distribution of neutral hydrogen, which our simulation reproduces. We find that nearly all of the H i absorption arises in gas that has remained colder than 105.5 K, at least while it was extragalactic. In addition, the majority of the H i is falling rapidly towards a nearby galaxy, with non‐negligible contributions from outflowing and static gas. Above a column density of cm−2, most of the absorbers reside inside haloes, but the interstellar medium only dominates for cm−2. Haloes with total mass below 1010 M dominate the absorption for  cm−2, but the average halo mass increases sharply for higher column densities. Although very little of the H i in absorbers with  cm−2 resides inside galaxies, systems with  cm−2 are closely related to star formation: most of their H i either will become part of the interstellar medium before z= 2 or has been ejected from a galaxy at z > 3. Cold accretion flows are critical for the success of our simulation in reproducing the observed rate of incidence of damped Lyman‐α and particularly that of Lyman limit systems. We therefore conclude that cold accretion flows exist and have already been detected in the form of high column density H i absorbers.

Keywords: galaxies: evolution; galaxies: formation; galaxies: high‐redshift; intergalactic medium; quasars: absorption lines; cosmology: theory

Journal Article.  9186 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.