Journal Article

Galaxy properties from the ultraviolet to the far-infrared: Λ cold dark matter models confront observations

Rachel S. Somerville, Rudy C. Gilmore, Joel R. Primack and Alberto Domínguez

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 423, issue 3, pages 1992-2015
Published in print July 2012 | ISSN: 0035-8711
Published online June 2012 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2012.20490.x
Galaxy properties from the ultraviolet to the far-infrared: Λ cold dark matter models confront observations

Show Summary Details

Preview

We combine a semi-analytic model of galaxy formation with simple analytic recipes describing the absorption and re-emission of starlight by dust in the interstellar medium of galaxies. We use the resulting models to predict galaxy counts and luminosity functions from the far-ultraviolet (FUV) to the submillimetre, from redshift five to the present, and compare with an extensive compilation of observations. We find that in order to reproduce the rest-UV and optical luminosity functions at high redshift, we must assume an evolving normalization in the dust-to-metal ratio, implying that galaxies of a given bolometric luminosity (or metal column density) must be less extinguished than their local counterparts. In our best-fitting model, we find remarkably good agreement with observations from rest ∼1500 Å to m. At longer wavelengths, most dramatically in the submillimetre, our models underpredict the number of bright galaxies by a large factor. The models reproduce the observed total IR luminosity function fairly well. We show the results of varying several ingredients of the models, including various aspects of the dust attenuation recipe, the dust emission templates and the cosmology. We use our models to predict the integrated extragalactic background light, and compare with an observationally motivated extragalactic background light EBL model and with other available observational constraints.

Keywords: galaxies: evolution; galaxies: formation; galaxies: high-redshift; cosmology: theory

Journal Article.  14139 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.