Journal Article

Numerical convergence in self‐gravitating shearing sheet simulations and the stochastic nature of disc fragmentation

Sijme‐Jan Paardekooper

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 421, issue 4, pages 3286-3299
Published in print April 2012 | ISSN: 0035-8711
Published online April 2012 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2012.20553.x
Numerical convergence in self‐gravitating shearing sheet simulations and the stochastic nature of disc fragmentation

Show Summary Details

Preview

We study numerical convergence in local two‐dimensional hydrodynamical simulations of self‐gravitating accretion discs with a simple cooling law. It is well known that there exists a steady gravitoturbulent state, in which cooling is balanced by dissipation of weak shocks, with a net outward transport of angular momentum. Previous results indicated that if cooling is too fast (typical time‐scale 3 Ω−1, where Ω is the local angular velocity), this steady state cannot be maintained and the disc will fragment into gravitationally bound clumps. We show that, in the two‐dimensional local approximation, this result is in fact not converged with respect to numerical resolution and longer time integration. Irrespective of the cooling time‐scale, gravitoturbulence consists of density waves as well as transient clumps. These clumps will contract because of the imposed cooling, and collapse into bound objects if they can survive for long enough. Since heating by shocks is very local, the destruction of clumps is a stochastic process. High numerical resolution and long integration times are needed to capture this behaviour. We have observed fragmentation for cooling times up to 20 Ω−1, almost a factor of 7 higher than in previous simulations. Fully three‐dimensional simulations with a more realistic cooling prescription are necessary to determine the effects of the use of the two‐dimensional approximation and a simple cooling law.

Keywords: accretion, accretion discs; hydrodynamics; instabilities; planets and satellites: formation; protoplanetary discs

Journal Article.  9069 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.