Journal Article

Modelling supermassive black hole growth: towards an improved sub‐grid prescription

Alexander Hobbs, Chris Power, Sergei Nayakshin and Andrew R. King

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 421, issue 4, pages 3443-3449
Published in print April 2012 | ISSN: 0035-8711
Published online April 2012 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2012.20563.x
Modelling supermassive black hole growth: towards an improved sub‐grid prescription

Show Summary Details

Preview

Accretion on to supermassive black holes (SMBHs) in galaxy formation simulations is frequently modelled by the Bondi–Hoyle formalism. Here we examine the validity of this approach analytically and numerically. We argue that the character of the flow where one evaluates the gas properties is unlikely to satisfy the simple Bondi–Hoyle model. Only in the specific case of hot virialized gas with zero angular momentum and negligible radiative cooling is the Bondi–Hoyle solution relevant. In the opposite extreme, where the gas is in a state of free‐fall at the evaluation radius due to efficient cooling and the dominant gravity of the surrounding halo, the Bondi–Hoyle formalism can be erroneous by orders of magnitude in either direction. This may impose artificial trends with halo mass in cosmological simulations by being wrong by different factors for different halo masses. We propose an expression for the sub‐grid accretion rate which interpolates between the free‐fall regime and the Bondi–Hoyle regime, therefore taking account of the contribution of the halo to the gas dynamics.

Keywords: accretion, accretion discs; methods: numerical; galaxies: evolution; galaxies: formation; galaxies: haloes; galaxies: nuclei

Journal Article.  5764 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.