Journal Article

Using two light-pollution models to investigate artificial sky radiances at Canary Islands observatories

M. Aubé and M. Kocifaj

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 422, issue 1, pages 819-830
Published in print May 2012 | ISSN: 0035-8711
Published online April 2012 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2012.20664.x
Using two light-pollution models to investigate artificial sky radiances at Canary Islands observatories

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

Astronomical observations are increasingly limited by light pollution, which is a product of the over-illumination of the night sky. To predict both the angular distribution of scattered light and the ground-reaching radiative fluxes, a set of models has been introduced in recent decades. Two distinct numerical tools, MSNsRAu and ILLUMINA, are compared in this paper, with the aim of identifying their strengths and weaknesses. The numerical experiment comprises the simulation of spectral radiances in the region of the Canary Islands. In particular, the light fields near the Roque de los Muchachos and Teide observatories are computed under various turbidity conditions. It is shown that ILLUMINA has enhanced accuracy at low elevation angles. However, ILLUMINA is time-consuming because of the two scattering orders incorporated into the calculation scheme. Under low-turbidity conditions and for zenith angles smaller than 70° the two models agree well, and thus can be successfully applied to typical cloudless situations at the majority of observatories. MSNsRAu is well optimized for large-scale simulations. In particular, the grid size is adapted dynamically depending on the distance between a light source and a hypothetical observer. This enables rapid numerical modelling for large territories. MSNsRAu is also well suited for the mass modelling of night-sky radiances after ground-based light sources are hypothetically changed. This enables an optimum design of public lighting systems and a time-efficient evaluation of the optical effects related to different lamp spectra or different lamp distributions. ILLUMINA provides two diagnostic geographical maps to help local authorities concerned about light-pollution control. The first map allows the identification of the relative contribution of each ground element to the observed sky radiance at a given viewing angle, while the second map gives the sensitivity, basically saying how each ground element contributes per lumen installed.

Keywords: radiative transfer; atmospheric effects; light pollution; methods: observational; site testing

Journal Article.  9283 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.