Journal Article

Desaturation manoeuvres and precise orbit determination for the BepiColombo mission

E. M. Alessi, S. Cicalò, A. Milani and G. Tommei

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 423, issue 3, pages 2270-2278
Published in print July 2012 | ISSN: 0035-8711
Published online June 2012 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2012.21035.x
Desaturation manoeuvres and precise orbit determination for the BepiColombo mission

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

This work analyses the consequences that the desaturation manoeuvres can have on the precise orbit determination corresponding to the Mercury Orbiter Radioscience Experiment (MORE) of the BepiColombo mission to Mercury. This is an ESA/JAXAjoint project with challenging objectives regarding geodesy, geophysics and fundamental physics. We will show how these manoeuvres affect the orbit of the s/c and the radio science measurements and how to include them in the orbit determination and parameter estimation procedure. The non-linear least-squares fit is applied on a set of observational arcs separated by intervals of time where the probe is not visible. With the current baseline of two ground stations, two manoeuvres are performed per day, one during the observing session and the other in the dark. To reach the scientific goals of the mission, they have to be treated as ‘solve for quantities’. We developed a specific methodology based on the deterministic propagation of the orbit, which is able to deal with these variables, by connecting subsequent observational arcs in a smooth way. The numerical simulations demonstrate that this constrained multi-arc strategy is able to determine all the manoeuvres together with the other parameters of interest at a high level of accuracy.

Keywords: celestial mechanics; planets and satellites: individual: Mercury

Journal Article.  4833 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.