Journal Article

Collisionless dynamics in globular clusters

Liliya L. R. Williams, Eric I. Barnes and Jens Hjorth

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 423, issue 4, pages 3589-3600
Published in print July 2012 | ISSN: 0035-8711
Published online July 2012 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2012.21158.x
Collisionless dynamics in globular clusters

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

Since globular clusters (GCs) are old, low-N systems their dynamics is widely believed to be fully dominated by collisional two-body processes and their surface brightness profiles are fitted by King models. However, for many GCs, especially those with Hubble Space Telescope-resolved central regions and ‘extratidal’ features, King models provide poor fits. We suggest that this is partly because collisionless dynamics is also important and contributes to shaping the cluster properties. We show using time-scale and length-scale arguments that except for the very centres of clusters, collisionless dynamics should be more important than collisional. We then fit 38 GCs analysed by Noyola & Gebhardt with (collisional) King and (collisionless) DARKexp models over the full available radial range, and find that the latter provide a better fit to 29 GCs; for six of these the fit is at least approximately five times better in terms of rms. DARKexp models are theoretically derived maximum entropy equilibrium states of self-gravitating collisionless systems and have already been shown to fit the results of dark matter N-body simulations. (We do not attempt fits with ad hoc fitting functions.)

Keywords: globular clusters: general

Journal Article.  7885 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.