Journal Article

How to distinguish starbursts and quiescently star-forming galaxies: the ‘bimodal’ submillimetre galaxy population as a case study

Christopher C. Hayward, Patrik Jonsson, Dušan Kereš, Benjamin Magnelli, Lars Hernquist and T. J. Cox

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 424, issue 2, pages 951-970
Published in print August 2012 | ISSN: 0035-8711
Published online August 2012 | e-ISSN: 1365-2966 | DOI:
How to distinguish starbursts and quiescently star-forming galaxies: the ‘bimodal’ submillimetre galaxy population as a case study

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics


Show Summary Details



In recent work, we have suggested that the high-redshift (z∼ 2–4) bright submillimetre galaxy (SMG) population is heterogeneous, with major mergers contributing both at early stages, where quiescently star-forming discs are blended into one submm source (‘galaxy-pair SMGs’), and at late stages, where mutual tidal torques drive gas inflows and cause strong starbursts. Here we combine hydrodynamic simulations of major mergers with 3D dust radiative transfer calculations to determine observational diagnostics that can distinguish between quiescently star-forming SMGs and starburst SMGs via integrated data alone. We fit the far-infrared (FIR) spectral energy distributions of the simulated galaxies with the optically thin single-temperature modified blackbody, the full form of the single-temperature modified blackbody and a power-law temperature distribution model. The effective dust temperature, Td, and power-law index of the dust emissivity in the FIR, β, derived can significantly depend on the fitting form used, and the intrinsic β of the dust is not recovered. However, for all forms used here, there is Td above which almost all simulated galaxies are starbursts, so a Td cut is very effective at selecting starbursts. Simulated merger-induced starbursts also have higher LIR/Mgas and LIR/LFUV than quiescently star-forming galaxies and lie above the star formation rate—stellar mass relation. These diagnostics can be used to test our claim that the SMG population is heterogeneous and to observationally determine what star formation mode dominates a given galaxy population. We comment on applicability of these diagnostics to ultraluminous IR galaxies (ULIRGs) that would not be selected as SMGs. These ‘hot-dust ULIRGs’ are typically starburst galaxies lower in mass than SMGs, but they can also simply be SMGs observed from a different viewing angle.

Keywords: radiative transfer; stars: formation; galaxies: high-redshift; galaxies: starburst; infrared: galaxies; submillimetre: galaxies

Journal Article.  16052 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.