Journal Article

The halo bispectrum in <i>N</i>-body simulations with non-Gaussian initial conditions

E. Sefusatti, M. Crocce and V. Desjacques

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 425, issue 4, pages 2903-2930
Published in print October 2012 | ISSN: 0035-8711
Published online October 2012 | e-ISSN: 1365-2966 | DOI:
The halo bispectrum in N-body simulations with non-Gaussian initial conditions

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics


Show Summary Details


We present measurements of the bispectrum of dark matter haloes in numerical simulations with non-Gaussian initial conditions of local type. We show, in the first place, that the overall effect of primordial non-Gaussianity on the halo bispectrum is larger than on the halo power spectrum when all measurable configurations are taken into account. We then compare our measurements with a tree-level perturbative prediction, finding good agreement at large scales when the constant Gaussian bias parameter, both linear and quadratic, and their constant non-Gaussian corrections are fitted for. The best-fitting values of the Gaussian bias factors and their non-Gaussian, scale-independent corrections are in qualitative agreement with the peak-background split expectations. In particular, we show that the effect of non-Gaussian initial conditions on squeezed configurations is fairly large (up to 30 per cent for fNL = 100 at redshift z = 0.5) and results from contributions of similar amplitude induced by the initial matter bispectrum, scale-dependent bias corrections as well as from non-linear matter bispectrum corrections. We show, in addition, that effects at second order in fNL are irrelevant for the range of values allowed by cosmic microwave background and galaxy power spectrum measurements, at least on the scales probed by our simulations (k > 0.01 h Mpc−1). Finally, we present a Fisher matrix analysis to assess the possibility of constraining primordial non-Gaussianity with future measurements of the galaxy bispectrum. We find that a survey with a volume of about 10 h−3 Gpc3 at mean redshift z ≃ 1 could provide an error on fNL of the order of a few. This shows the relevance of a joint analysis of galaxy power spectrum and bispectrum in future redshift surveys.

Keywords: cosmology: theory; inflation; large-scale structure of Universe

Journal Article.  14463 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.