Journal Article

The <i>XMM</i> Cluster Survey: evidence for energy injection at high redshift from evolution of the X-ray luminosity-temperature relation

Matt Hilton, A. Kathy Romer, Scott T. Kay, Nicola Mehrtens, E. J. Lloyd-Davies, Peter A. Thomas, Chris J. Short, Julian A. Mayers, Philip J. Rooney, John P. Stott, Chris A. Collins, Craig D. Harrison, Ben Hoyle, Andrew R. Liddle, Robert G. Mann, Christopher J. Miller, Martin Sahlén, Pedro T. P. Viana, Michael Davidson, Mark Hosmer, Robert C. Nichol, Kivanc Sabirli, S. A. Stanford and Michael J. West

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 424, issue 3, pages 2086-2096
Published in print August 2012 | ISSN: 0035-8711
Published online August 2012 | e-ISSN: 1365-2966 | DOI:
The XMM Cluster Survey: evidence for energy injection at high redshift from evolution of the X-ray luminosity-temperature relation

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics


Show Summary Details



We measure the evolution of the X-ray luminosity–temperature (LXT) relation since z ∼ 1.5 using a sample of 211 serendipitously detected galaxy clusters with spectroscopic redshifts drawn from the XMM Cluster Survey first data release (XCS-DR1). This is the first study spanning this redshift range using a single, large, homogeneous cluster sample. Using an orthogonal regression technique, we find no evidence for evolution in the slope or intrinsic scatter of the relation since z ∼ 1.5, finding both to be consistent with previous measurements at z ∼ 0.1. However, the normalization is seen to evolve negatively with respect to the self-similar expectation: we find E−1(z) LX = 1044.67 ± 0.09(T/5)3.04 ± 0.16(1 + z)−1.5 ± 0.5, which is within 2σ of the zero evolution case. We see milder, but still negative, evolution with respect to self-similar when using a bisector regression technique. We compare our results to numerical simulations, where we fit simulated cluster samples using the same methods used on the XCS data. Our data favour models in which the majority of the excess entropy required to explain the slope of the LXT relation is injected at high redshift. Simulations in which active galactic nucleus feedback is implemented using prescriptions from current semi-analytic galaxy formation models predict the positive evolution of the normalization, and differ from our data at more than 5σ. This suggests that more efficient feedback at high redshift may be needed in these models.

Keywords: galaxies: clusters: general; galaxies: clusters: intracluster medium; galaxies: high-redshift; cosmology: observations; X-rays: galaxies: clusters

Journal Article.  8750 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.