Journal Article

Imaging neutral hydrogen on large scales during the Epoch of Reionization with LOFAR

S. Zaroubi, A. G. de Bruyn, G. Harker, R. M. Thomas, P. Labropolous, V. Jelić, L. V. E. Koopmans, M. A. Brentjens, G. Bernardi, B. Ciardi, S. Daiboo, S. Kazemi, O. Martinez-Rubi, G. Mellema, A. R. Offringa, V. N. Pandey, J. Schaye, V. Veligatla, H. Vedantham and S. Yatawatta

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 425, issue 4, pages 2964-2973
Published in print October 2012 | ISSN: 0035-8711
Published online October 2012 | e-ISSN: 1365-2966 | DOI:
Imaging neutral hydrogen on large scales during the Epoch of Reionization with LOFAR

Show Summary Details


The first generation of redshifted 21 cm detection experiments, carried out with arrays like Low Frequency Array (LOFAR), Murchison Widefield Array (MWA) and Giant Metrewave Telescope (GMRT), will have a very low signal-to-noise ratio (S/N) per resolution element (≲0.2). In addition, whereas the variance of the cosmological signal decreases on scales larger than the typical size of ionization bubbles, the variance of the formidable galactic foregrounds increases, making it hard to disentangle the two on such large scales. The poor sensitivity on small scales, on the one hand, and the foregrounds effect on large scales, on the other hand, make direct imaging of the Epoch of Reionization of the Universe very difficult, and detection of the signal therefore is expected to be statistical. Despite these hurdles, in this paper we argue that for many reionization scenarios low-resolution images could be obtained from the expected data. This is because at the later stages of the process one still finds very large pockets of neutral regions in the intergalactic medium, reflecting the clustering of the large-scale structure, which stays strong up to scales of ≈120 h−1 comoving Mpc (≈1°). The coherence of the emission on those scales allows us to reach sufficient S/N (≳3) so as to obtain reionization 21 cm images. Such images will be extremely valuable for answering many cosmological questions but above all they will be a very powerful tool to test our control of the systematics in the data. The existence of this typical scale (≈120 h−1 comoving Mpc) also argues for designing future EoR experiments, e.g. with Square Kilometre Array, with a field of view of at least 4°.

Keywords: methods: statistical; cosmology: observations; cosmology: theory; diffuse radiation; large-scale structure of Universe; radio lines: general

Journal Article.  7676 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.