Journal Article

Investigating stellar-mass black hole kicks

Serena Repetto, Melvyn B. Davies and Steinn Sigurdsson

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 425, issue 4, pages 2799-2809
Published in print October 2012 | ISSN: 0035-8711
Published online October 2012 | e-ISSN: 1365-2966 | DOI:
Investigating stellar-mass black hole kicks

Show Summary Details


We investigate whether stellar-mass black holes have to receive natal kicks in order to explain the observed distribution of low-mass X-ray binaries containing black holes within our Galaxy. Such binaries are the product of binary evolution, where the massive primary has exploded forming a stellar-mass black hole, probably after a common envelope phase where the system contracted down to separations of the order of 10–30 R. We perform population synthesis calculations of these binaries, applying both kicks due to supernova mass-loss and natal kicks due to the newly formed black hole. We then integrate the trajectories of the binary systems within the Galactic potential. We find that natal kicks are in fact necessary to reach the large distances above the Galactic plane achieved by some binaries. Further, we find that the distribution of natal kicks would seem to be similar to that of neutron stars, rather than one where the kick velocities are reduced by the ratio of black hole to neutron star mass (i.e. where the kicks have the same momentum). This result is somewhat surprising; in many pictures of stellar-mass black hole formation, one might have expected black holes to receive kicks having the same momentum (rather than the same speed) as those given to neutron stars.

Keywords: black hole physics; binaries: general; stars: neutron; supernovae: general; Galaxy: kinematics and dynamics; X-rays: binaries

Journal Article.  7858 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.