Journal Article

The impact of collisional rate coefficients on molecular hyperfine selective excitation

A. Faure and F. Lique

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 425, issue 1, pages 740-748
Published in print September 2012 | ISSN: 0035-8711
Published online September 2012 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2012.21601.x
The impact of collisional rate coefficients on molecular hyperfine selective excitation

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

Abstract

Nuclei with non-zero spin induce hyperfine splittings in the rotational spectrum of many commonly observed interstellar molecules. Radiative transfer modelling of such species requires in general a good knowledge of hyperfine selective collisional rate coefficients. We investigate in this work the impact of collisional rate coefficients on the molecular hyperfine excitation. The approximate sudden and statistical (proportional) methods are first compared to the almost exact recoupling approach. Rate coefficients are presented for a large number of CN and HCN transitions, with para-H2(j = 0) as a collider. The sudden approximation and the recoupling approach, which both predict the propensity rule Δj = ΔF, are found to agree within a factor of 3 or better. Radiative transfer calculations are then performed using the large velocity gradient approximation. At low and moderate total optical depths (τ ≲ 10), where the relative hyperfine populations are close to the statistical weights, both the sudden and the statistical approximations are shown to provide accurate alternatives to the recoupling approach. At higher total opacities, however, the hyperfine propensity rule appears to matter and the sudden method is found to be significantly superior to the statistical approach.

Keywords: line: profiles; molecular data; molecular processes; radiative transfer; scattering

Journal Article.  6139 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.