Journal Article

Cosmography from two-image lens systems: overcoming the lens profile slope degeneracy

S. H. Suyu

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 426, issue 2, pages 868-879
Published in print October 2012 | ISSN: 0035-8711
Published online October 2012 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2012.21661.x
Cosmography from two-image lens systems: overcoming the lens profile slope degeneracy

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

Abstract

The time delays between the multiple images of a strong lens system, together with a model of the lens mass distribution, allow a one-step measurement of a cosmological distance, namely, the ‘time-delay distance’ of the lens (DΔt) that encodes cosmological information. The time-delay distance depends sensitively on the radial profile slope of the lens mass distribution; consequently, the lens slope must be accurately constrained for cosmological studies. We show that the slope cannot be constrained in two-image systems with single-component compact sources, whereas it can be constrained in systems with two-component sources provided that the separation between the image components can be measured with milliarcsecond precisions, which is not feasible in most systems. In contrast, we demonstrate that spatially extended images of the source galaxy in two-image systems break the radial slope degeneracy and allow DΔt to be measured with uncertainties of a few per cent. Deep and high-resolution imaging of the lens systems are needed to reveal the extended arcs, and stable point spread functions are required for our lens modelling technique. Two-image systems, no longer plagued by the radial profile slope degeneracy, would augment the sample of useful time-delay lenses by a factor of ∼6, providing substantial advances for cosmological studies.

Keywords: gravitational lensing: strong; methods: data analysis; distance scale

Journal Article.  8830 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.