Journal Article

On proton synchrotron blazar models: the case of quasar 3C 279

M. Petropoulou and A. Mastichiadis

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 426, issue 1, pages 462-472
Published in print October 2012 | ISSN: 0035-8711
Published online October 2012 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2012.21720.x
On proton synchrotron blazar models: the case of quasar 3C 279

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

Abstract

In this work we propose an innovative estimation method for the minimum Doppler factor and energy content of the γ-ray emitting region of quasar 3C 279, using a standard proton synchrotron blazar model and the principles of automatic photon quenching. The latter becomes relevant for high enough magnetic fields and results in spontaneous annihilation of γ-rays. The absorbed energy is then redistributed into electron–positron pairs and soft radiation. We show that as quenching sets an upper value for the source rest-frame γ-ray luminosity, one has, by necessity, to resort to Doppler factors that lie above a certain value in order to explain the TeV observations. The existence of this lower limit for the Doppler factor also has implications on the energetics of the emitting region. In this aspect, the proposed method can be regarded as an extension of the widely used method for estimating the equipartition magnetic field using radio observations. In our case, the leptonic synchrotron component is replaced by the proton synchrotron emission and the radio by the very high energy γ-ray observations. We show specifically that one can model the TeV observations by using parameter values that minimize both the energy density and the jet power at the cost of high values of the Doppler factor. On the other hand, the modelling can also be done by using the minimum possible Doppler factor; this, however, leads to a particle-dominated region and high jet power for a wide range of magnetic field values. Despite the fact that we have focused on the case of 3C 279, our analysis can be of relevance to all TeV blazars favouring hadronic modelling that have, moreover, simultaneous X-ray observations.

Keywords: astroparticle physics; radiation mechanisms: non-thermal; galaxies: active; gamma-rays: galaxies

Journal Article.  8973 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.