Journal Article

Homogeneous studies of transiting extrasolar planets – V. New results for 38 planets

John Southworth

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 426, issue 2, pages 1291-1323
Published in print October 2012 | ISSN: 0035-8711
Published online October 2012 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2012.21756.x
Homogeneous studies of transiting extrasolar planets – V. New results for 38 planets

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

I measure the physical properties of 38 transiting extrasolar planetary systems, bringing the total number studied within the Homogeneous Studies project to 82. Transit light curves are modelled using the jktebop code, with careful attention paid to limb darkening, orbital eccentricity and contaminating light. The physical properties of each system are obtained from the photometric parameters, published spectroscopic measurements and five sets of theoretical stellar model predictions. Statistical errors are assessed using Monte Carlo and residual permutation algorithms and propagated via a perturbation algorithm. Systematic errors are estimated from the interagreement between results calculated using five theoretical stellar models.

The headline result is a major upward revision of the radius of the planet in the OGLE-TR-56 system, from 1.23–1.38 to 1.734 ± 0.051 ± 0.029 RJup (statistical and systematic errors, respectively). Its density is three times lower than previously thought. This change comes from the first complete analysis of published high-quality photometry. Significantly larger planetary radii are also found for Kepler-15, KOI-428, WASP-13, WASP-14 and WASP-21 compared to previous work.

I present the first results based on Kepler short-cadence data for Kepler-14, Kepler-15 and KOI-135. More extensive long-cadence data from the Kepler satellite are used to improve the measured properties of KOI-196, KOI-204, KOI-254, KOI-423 and KOI-428. The stellar component in the KOI-428 system is the largest known to host a transiting planet, at 2.48 ± 0.17 ± 0.20 R. Detailed analyses are given for HAT-P-3, HAT-P-6, HAT-P-9, HAT-P-14 and WASP-12, based on more extensive data sets than considered in previous studies.

Detailed analyses are also presented for the CoRoT systems 17, 18, 19, 20 and 23; Kepler-7, -12 and -17; KOI-254; OGLE-TR-111, -113, -132 and L9 and TrES-4.

I revisit the correlations between orbital period and surface gravity, and orbital period and mass of the transiting planets, finding both to be significant at the 4σ level. I conclude by discussing the opportunities for follow-up observations, the sky positions and the discovery rate of the known transiting planets.

Keywords: stars: fundamental parameters; planetary systems

Journal Article.  25025 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.