Journal Article

FMOS near-IR spectroscopy of <i>Herschel</i>-selected galaxies: star formation rates, metallicity and dust attenuation at <i>z</i> ∼ 1

I. G. Roseboom, A. Bunker, M. Sumiyoshi, L. Wang, G. Dalton, M. Akiyama, J. Bock, D. Bonfield, V. Buat, C. Casey, E. Chapin, D. L. Clements, A. Conley, E. Curtis-Lake, A. Cooray, J. S. Dunlop, D. Farrah, S. J. Ham, E. Ibar, F. Iwamuro, M. Kimura, I. Lewis, E. Macaulay, G. Magdis, T. Maihara, G. Marsden, T. Mauch, Y. Moritani, K. Ohta, S. J. Oliver, M. J. Page, B. Schulz, Douglas Scott, M. Symeonidis, N. Takato, N. Tamura, T. Totani, K. Yabe and M. Zemcov

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 426, issue 3, pages 1782-1792
Published in print November 2012 | ISSN: 0035-8711
Published online November 2012 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2012.21777.x
FMOS near-IR spectroscopy of Herschel-selected galaxies: star formation rates, metallicity and dust attenuation at z ∼ 1

Show Summary Details

Preview

Abstract

We investigate the properties (e.g. star formation rate, dust attenuation, stellar mass and metallicity) of a sample of infrared (IR) luminous galaxies at z ∼ 1 via near-IR spectroscopy with Subaru-FMOS. Our sample consists of Herschel SPIRE and Spitzer MIPS selected sources in the COSMOS field with photometric redshifts in the range of 0.7 < zphot < 1.8, which have been targeted in two pointings (0.5 deg2) with FMOS. We find a modest success rate for emission-line detections, with candidate Hα emission lines detected for 57 of 168 SPIRE sources (34 per cent). By stacking the near-IR spectra we directly measure the mean Balmer decrement for the Hα and Hβ lines, finding a value of 〈E(BV)〉 = 0.51 ± 0.27 for 〈LIR〉 = 1012 L sources at 〈z〉 = 1.36. By comparing star formation rates estimated from the IR and from the dust-uncorrected Hα line we find a strong relationship between dust attenuation and star formation rate. This relation is broadly consistent with that previously seen in star-forming galaxies at z ∼ 0.1. Finally, we investigate the metallicity via the N2 ratio, finding that z ∼ 1 IR-selected sources are indistinguishable from the local mass–metallicity relation. We also find a strong correlation between dust attenuation and metallicity, with the most metal-rich IR sources experiencing the largest levels of dust attenuation.

Keywords: galaxies: evolution; submillimetre: galaxies

Journal Article.  7538 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.