Journal Article

Characterizing the dynamical state of star clusters from snapshots of their spatial distributions

Richard J. Parker and Michael R. Meyer

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 427, issue 1, pages 637-650
Published in print November 2012 | ISSN: 0035-8711
Published online November 2012 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2012.21851.x
Characterizing the dynamical state of star clusters from snapshots of their spatial distributions

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

We determine the distribution of stellar surface densities, Σ, from models of static and dynamically evolving star clusters with different morphologies, including both radially smooth and substructured clusters. We find that the Σ distribution is degenerate, in the sense that many different cluster morphologies (smooth or substructured) produce similar cumulative distributions. However, when used in tandem with a measure of structure, such as the -parameter, the current spatial and dynamical state of a star cluster can be inferred. The effect of cluster dynamics on the Σ distribution and the -parameter is investigated using N-body simulations and we find that, depending on the assumed initial conditions, the Σ distribution can rapidly evolve from high to low densities in less than 5 Myr. This suggests that the Σ distribution can only be used to assess the current density of a star-forming region, and provides little information on its initial density. However, if the Σ distribution is used together with the -parameter, then information on the amount of substructure can be used as a proxy to infer the amount of dynamical evolution that has taken place. Substructure is erased quickly through dynamics, which can disrupt binary star systems and planets, as well as facilitate dynamical mass segregation. Therefore, dynamical processing in young star-forming regions could still be significant, even without currently observed high densities.

Keywords: methods: numerical; stars: formation; stars: kinematics and dynamics; open clusters and associations: general

Journal Article.  8985 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.