Journal Article

An optimal estimator for the CMB–LSS angular power spectrum and its application to <i>WMAP</i> and NVSS data

F. Schiavon, F. Finelli, A. Gruppuso, A. Marcos-Caballero, P. Vielva, R. G. Crittenden, R. B. Barreiro and E. Martínez-González

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 427, issue 4, pages 3044-3054
Published in print December 2012 | ISSN: 0035-8711
Published online December 2012 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2012.21974.x
An optimal estimator for the CMB–LSS angular power spectrum and its application to WMAP and NVSS data

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

We use a quadratic maximum likelihood (QML) method to estimate the angular power spectrum of the cross-correlation between cosmic microwave background and large-scale structure maps as well as their individual auto-spectra. We describe our implementation of this method and demonstrate its accuracy on simulated maps. We apply this optimal estimator to Wilkinson Microwave Anisotropy Probe (WMAP) 7-yr and National Radio Astronomical Observatory (NRAO) Very Large Array Sky Survey (NVSS) data and explore the robustness of the angular power spectrum estimates obtained by the QML method. With the correction of the declination systematics in NVSS, we can safely use most of the information contained in this survey. We then make use of the angular power spectrum estimates obtained by the QML method to derive constraints on the dark energy critical density in a flat Λ cold dark matter model by different likelihood prescriptions. When using just the cross-correlation between WMAP 7-yr and NVSS maps with 1°.8 resolution, the best-fitting model has a cosmological constant of approximately 70 per cent of the total energy density, disfavouring an Einstein–de sitter universe at more than 2σ confidence level.

Keywords: methods: numerical; methods: statistical; cosmic background radiation; cosmology: observations; large-scale structure of Universe

Journal Article.  6623 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.