Journal Article

Galaxy And Mass Assembly (GAMA): the 0.013 < z < 0.1 cosmic spectral energy distribution from 0.1 μm to 1 mm

S. P. Driver, A. S. G. Robotham, L. Kelvin, M. Alpaslan, I. K. Baldry, S. P. Bamford, S. Brough, M. Brown, A. M. Hopkins, J. Liske, J. Loveday, P. Norberg, J. A. Peacock, E. Andrae, J. Bland-Hawthorn, N. Bourne, E. Cameron, M. Colless, C. J. Conselice, S. M. Croom, L. Dunne, C. S. Frenk, Alister W. Graham, M. Gunawardhana, D. T. Hill, D. H. Jones, K. Kuijken, B. Madore, R. C. Nichol, H. R. Parkinson, K. A. Pimbblet, S. Phillipps, C. C. Popescu, M. Prescott, M. Seibert, R. G. Sharp, W. J. Sutherland, E. N. Taylor, D. Thomas, R. J. Tuffs, E. van Kampen, D. Wijesinghe and S. Wilkins

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 427, issue 4, pages 3244-3264
Published in print December 2012 | ISSN: 0035-8711
Published online December 2012 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2012.22036.x
Galaxy And Mass Assembly (GAMA): the 0.013 < z < 0.1 cosmic spectral energy distribution from 0.1 μm to 1 mm

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

We use the Galaxy And Mass Assembly survey (GAMA) I data set combined with GALEX, Sloan Digital Sky Survey (SDSS) and UKIRT Infrared Deep Sky Survey (UKIDSS) imaging to construct the low-redshift (z < 0.1) galaxy luminosity functions in FUV, NUV, ugriz and YJHK bands from within a single well-constrained volume of 3.4 × 105 (Mpc h−1)3. The derived luminosity distributions are normalized to the SDSS data release 7 (DR7) main survey to reduce the estimated cosmic variance to the 5 per cent level. The data are used to construct the cosmic spectral energy distribution (CSED) from 0.1 to 2.1 μm free from any wavelength-dependent cosmic variance for both the elliptical and non-elliptical populations. The two populations exhibit dramatically different CSEDs as expected for a predominantly old and young population, respectively. Using the Driver et al. prescription for the azimuthally averaged photon escape fraction, the non-ellipticals are corrected for the impact of dust attenuation and the combined CSED constructed. The final results show that the Universe is currently generating (1.8 ± 0.3) × 1035 h W Mpc−3 of which (1.2 ± 0.1) × 1035 h W Mpc−3 is directly released into the inter-galactic medium and (0.6 ± 0.1) × 1035 h W Mpc−3 is reprocessed and reradiated by dust in the far-IR. Using the GAMA data and our dust model we predict the mid- and far-IR emission which agrees remarkably well with available data. We therefore provide a robust description of the pre- and post-dust attenuated energy output of the nearby Universe from 0.1 μm to 0.6 mm. The largest uncertainty in this measurement lies in the mid- and far-IR bands stemming from the dust attenuation correction and its currently poorly constrained dependence on environment, stellar mass and morphology.

Keywords: surveys; galaxies: fundamental parameters; galaxies: general; galaxies: luminosity function, mass function; cosmology: observations; infrared: galaxies

Journal Article.  11309 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.