Journal Article

Atmospheric turbulence profiling using multiple laser star wavefront sensors

Angela Cortés, Benoit Neichel, Andrés Guesalaga, James Osborn, Francois Rigaut and Dani Guzman

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 427, issue 3, pages 2089-2099
Published in print December 2012 | ISSN: 0035-8711
Published online December 2012 | e-ISSN: 1365-2966 | DOI:
Atmospheric turbulence profiling using multiple laser star wavefront sensors

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics


Show Summary Details



This paper describes the data pre-processing and reduction methods together with SLOpe Detection And Ranging (SLODAR) analysis and wind profiling techniques for the Gemini South Multi-Conjugate Adaptive Optics System (GeMS).

The wavefront gradient measurements of the five GeMS Shack–Hartmann sensors, each pointing to a laser guide star, are combined with the deformable mirror (DM) commands sent to three DMs optically conjugated at 0, 4.5 and 9 km in order to reconstruct pseudo-open loop slopes.

These pseudo-open loop slopes are then used to reconstruct atmospheric turbulence profiles, based on the SLODAR and wind-profiling methods. We introduce the SLODAR method, and how it has been adapted to work in a closed-loop, multi-laser guide star system. We show that our method allows characterizing the turbulence of up to 16 layers for altitudes spanning from 0 to 19 km. The data pre-processing and reduction methods are described, and results obtained from observations made in 2011 are presented. The wind profiling analysis is shown to be a powerful technique not only for characterizing the turbulence intensity, wind direction and speed, but also as it can provide a verification tool for SLODAR results. Finally, problems such as the fratricide effect in multiple laser systems due to Rayleigh scattering, centroid gain variations, and limitations of the method are also addressed.

Keywords: atmospheric effects; instrumentation: adaptive optics; methods: data analysis; site testing

Journal Article.  6619 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.