Journal Article

Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution

Marc Valls and Víctor de Lorenzo

in FEMS Microbiology Reviews

Published on behalf of Federation of European Microbiological Societies

Volume 26, issue 4, pages 327-338
Published in print November 2002 |
Published online January 2006 | e-ISSN: 1574-6976 | DOI: http://dx.doi.org/10.1111/j.1574-6976.2002.tb00618.x

More Like This

Show all results sharing these subjects:

  • Medical Microbiology and Virology
  • Biotechnology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology

GO

Show Summary Details

Preview

Abstract

The threat of heavy metal pollution to public health and wildlife has led to an increased interest in developing systems that can remove or neutralise its toxic effects in soil, sediments and wastewater. Unlike organic contaminants, which can be degraded to harmless chemical species, heavy metals cannot be destroyed. Remediating the pollution they cause can therefore only be envisioned as their immobilisation in a non-bioavailable form, or their re-speciation into less toxic forms. While these approaches do not solve the problem altogether, they do help to protect afflicted sites from noxious effects and isolate the contaminants as a contained and sometimes recyclable residue. This review outlines the most important bacterial phenotypes and properties that are (or could be) instrumental in heavy metal bioremediation, along with what is known of their genetic and biochemical background. A variety of instances are discussed in which valuable properties already present in certain strains can be combined or improved through state-of-the-art genetic engineering. In other cases, knowledge of metal-related reactions catalysed by some bacteria allows optimisation of the desired process by altering the physicochemical conditions of the contaminated area. The combination of genetic engineering of the bacterial catalysts with judicious eco-engineering of the polluted sites will be of paramount importance in future bioremediation strategies.

Keywords: Metal accumulation; Bioremediation; Biocatalyst; Speciation; Metallothionein

Journal Article.  8391 words.  Illustrated.

Subjects: Medical Microbiology and Virology ; Biotechnology ; Genetics and Genomics ; Microbiology ; Molecular and Cell Biology

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.