Why Likelihood?

Malcolm Forster and Elliott Sober

in The Nature of Scientific Evidence

Published by University of Chicago Press

Published in print October 2004 | ISBN: 9780226789552
Published online February 2013 | e-ISBN: 9780226789583 | DOI:
Why Likelihood?

More Like This

Show all results sharing this subject:

  • Animal Pathology and Diseases


Show Summary Details


The likelihood principle has been defended on Bayesian grounds, with proponents insisting that it coincides with and systematizes intuitive judgments about example problems, and that it generalizes what is true when hypotheses have deductive consequences about observations. Richard Royall offers three kinds of justification. He points out, first, that the likelihood principle makes intuitive sense when probabilities are all 1s and 0s. His second argument is that the likelihood ratio is precisely the factor that transforms a ratio of prior probabilities into a ratio of posteriors. His third line of defense of the likelihood principle is to show that it coincides with intuitive judgments about evidence when the principle is applied to specific cases. This chapter divides the principle into two parts—one qualitative, the other quantitative—and evaluates each in the light of the Akaike information criterion (AIC). Both turn out to be correct in a special case (when the competing hypotheses have the same number of adjustable parameters), but not otherwise.

Keywords: likelihood principle; intuitive judgments; hypotheses; observations; Richard Royall; probabilities; likelihood ratio; posteriors; evidence; Akaike information criterion

Chapter.  16052 words.  Illustrated.

Subjects: Animal Pathology and Diseases

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.