Journal Article

In-vitro bactericidal efficacy of sub-MIC concentrations of liposome-encapsulated antibiotic against gram-negative and gram-positive bacteria.

C Beaulac, S Sachetelli and J Lagace

in Journal of Antimicrobial Chemotherapy

Published on behalf of British Society for Antimicrobial Chemotherapy

Volume 41, issue 1, pages 35-41
Published in print January 1998 | ISSN: 0305-7453
Published online January 1998 | e-ISSN: 1460-2091 | DOI: https://dx.doi.org/10.1093/jac/41.1.35
In-vitro bactericidal efficacy of sub-MIC concentrations of liposome-encapsulated antibiotic against gram-negative and gram-positive bacteria.

More Like This

Show all results sharing these subjects:

  • Medical Oncology
  • Critical Care

GO

Show Summary Details

Preview

It has been shown previously that tobramycin encapsulated in fluid liposomes (composed of dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylglycerol (DMPG)) eradicated mucoid Pseudomonas aeruginosa in an animal model of chronic pulmonary infection. Exponential cultures of P. aeruginosa, Stenotrophomonas maltophila, Burkholderia cepacia, Escherichia coli and Staphylococcus aureus were treated with (i) free tobramycin, (ii) sub-MIC tobramycin encapsulated in DPPC/DMPG liposomes, (iii) control liposomes without antibiotic or (iv) control liposomes combined with free tobramycin. Bacterial colonies were counted 0, 1, 3, 6 and 16 h after addition of antibiotic. After 3 h, the growth of B. cepacia, E. coli and S. aureus was reduced 129, 84 and 566 times respectively in cultures treated with encapsulated antibiotic compared with those treated with free antibiotic. Six hours and 16 h after treatment, the maximal reduction of growth between strains treated with liposome-encapsulated tobramycin and free tobramycin was 84, 129, 166, 10(5) and 10(4) times respectively for P. aeruginosa, B. cepacia, E. coli, S. maltophilia and S. aureus. The liposomes were stable at 4 degrees C and at room temperature for the whole period studied. At 37 degrees C, equivalent stability was observed for the first 16 h of the study. Administration of antibiotic encapsulated in DPPC/DMPG liposomes may thus greatly improve the management of resistant infections caused by a large range of microorganisms. The strong bactericidal activity of the encapsulated antibiotic at sub-MIC doses of the strains tested cannot be explained only as a result of prolonged residence time of liposome-encapsulated tobramycin and the resulting release of entrapped antibiotic at the bacterial site; rather, direct interaction of chemoliposomes and bacteria, probably by a fusion process, may explain the bactericidal effect of the sub-MIC antibiotic doses used.

Journal Article.  0 words. 

Subjects: Medical Oncology ; Critical Care

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content. subscribe or purchase to access all content.