Journal Article

Combining Tpi and CO1 Genetic Markers to Discriminate Invasive Helicoverpa armigera From Local Helicoverpa zea (Lepidoptera: Noctuidae) Populations in the Southeastern United States

Rodney N. Nagoshi, Todd M. Gilligan and Julieta Brambila

in Journal of Economic Entomology

Published on behalf of Entomological Society of America

Volume 109, issue 5, pages 2115-2124
Published in print October 2016 | ISSN: 0022-0493
Published online August 2016 | e-ISSN: 1938-291X | DOI: https://dx.doi.org/10.1093/jee/tow177
Combining Tpi and CO1 Genetic Markers to Discriminate Invasive Helicoverpa armigera From Local Helicoverpa zea (Lepidoptera: Noctuidae) Populations in the Southeastern United States

Show Summary Details

Preview

The recent establishment of the Old World pest Helicoverpa armigera (Hübner) into South America has had significant economic consequences and places the rest of the hemisphere at risk, emphasizing the need for improved methods of monitoring. A major complication is that a sibling species endemic to the New World, Helicoverpa zea (Boddie), is morphologically very similar, with the two species capable of producing fertile hybrids in the laboratory. The consequences of such hybridization in the field are uncertain, but could result in significant and unpredictable changes in the timing, range, and pesticide susceptibilities of Helicoverpa infestations. The objective here is to provide new genetic resources applicable to Helicoverpa populations in northern Florida and neighboring states (a region at risk for H. armigera) that can distinguish the two species and possible hybrids. The genetic variability in segments of the mitochondrial cytochrome oxidase 1 (CO1) and the Z-linked triosephosphate isomerase (Tpi) genes were determined for H. zea from the southeastern United States. These were compared to DNA sequences from H. armigera specimens from Morocco, Australia, and Europe. Phylogenetic network analysis showed a clear demarcation between the two species for all gene segments. These results extend earlier studies establishing CO1 as marker for discriminating the Helicoverpa species complex and introduce a new sex-linked genomic marker. The CO1 and Tpi markers in combination provide a more accurate and sensitive method than existing techniques for identifying hybridization between H. zea and H. armigera and could potentially be used to extrapolate the likely source of invasive H. armigera populations.

Keywords: cytochrome oxidase 1; triosephosphate isomerase; invasive pest; Helicoverpa armigera; Helicoverpa zea

Journal Article.  6679 words.  Illustrated.

Subjects: Entomology

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content. subscribe or login to access all content.