Journal Article

In vivo sensitivity of the embryonic and adult neural stem cell compartments to low-dose radiation

Lara Barazzuol and Penny A. Jeggo

in Journal of Radiation Research

Volume 57, issue S1, pages i2-i10
Published in print August 2016 | ISSN: 0449-3060
Published online August 2016 | e-ISSN: 1349-9157 | DOI: https://dx.doi.org/10.1093/jrr/rrw013

More Like This

Show all results sharing these subjects:

  • Clinical Genetics
  • Molecular Biology and Genetics
  • Epidemiology
  • Radiology
  • Nuclear Chemistry, Photochemistry, and Radiation

GO

Show Summary Details

Preview

The embryonic brain is radiation-sensitive, with cognitive deficits being observed after exposure to low radiation doses. Exposure of neonates to radiation can cause intracranial carcinogenesis. To gain insight into the basis underlying these outcomes, we examined the response of the embryonic, neonatal and adult brain to low-dose radiation, focusing on the neural stem cell compartments. This review summarizes our recent findings. At E13.5–14.5 the embryonic neocortex encompasses rapidly proliferating stem and progenitor cells. Exploiting mice with a hypomorphic mutation in DNA ligase IV (Lig4Y288C ), we found a high level of DNA double-strand breaks (DSBs) at E14.5, which we attribute to the rapid proliferation. We observed endogenous apoptosis in Lig4Y288C embryos and in WT embryos following exposure to low radiation doses. An examination of DSB levels and apoptosis in adult neural stem cell compartments, the subventricular zone (SVZ) and the subgranular zone (SGZ) revealed low DSB levels in Lig4Y288C mice, comparable with the levels in differentiated neuronal tissues. We conclude that the adult SVZ does not incur high levels of DNA breakage, but sensitively activates apoptosis; apoptosis was less sensitively activated in the SGZ, and differentiated neuronal tissues did not activate apoptosis. P5/P15 mice showed intermediate DSB levels, suggesting that DSBs generated in the embryo can be transmitted to neonates and undergo slow repair. Interestingly, this analysis revealed a stage of high endogenous apoptosis in the neonatal SVZ. Collectively, these studies reveal that the adult neural stem cell compartment, like the embryonic counterpart, can sensitively activate apoptosis.

Keywords: neural stem cells; DNA damage response; low-dose radiation; DNA double-strand break repair; radiation sensitivity

Journal Article.  5997 words.  Illustrated.

Subjects: Clinical Genetics ; Molecular Biology and Genetics ; Epidemiology ; Radiology ; Nuclear Chemistry, Photochemistry, and Radiation

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content. subscribe or login to access all content.