Journal Article

An analytical model of radiation-induced Charge Transfer Inefficiency for CCD detectors

A. Short, C. Crowley, J. H. J. de Bruijne and T. Prod'homme

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 430, issue 4, pages 3078-3085
Published in print April 2013 | ISSN: 0035-8711
Published online February 2013 | e-ISSN: 1365-2966 | DOI:
An analytical model of radiation-induced Charge Transfer Inefficiency for CCD detectors

Show Summary Details


The European Space Agency's Gaia mission is scheduled for launch in 2013. It will operate at L2 for 5 years, rotating slowly to scan the sky so that its two optical telescopes will repeatedly observe more than one billion stars. The resulting data set will be iteratively reduced to solve for the position, parallax and proper motion of every observed star. The focal plane contains 106 large area silicon CCDs continuously operating in a mode where the line transfer rate and the satellite rotation are in synchronization.

One of the greatest challenges facing the mission is radiation damage to the CCDs which will cause charge deferral and image shape distortion. This is particularly important because of the extreme accuracy requirements of the mission. Despite steps taken at hardware level to minimize the effects of radiation, the residual distortion will need to be calibrated during the pipeline data processing. Due to the volume and inhomogeneity of data involved, this requires a model which describes the effects of the radiation damage which is physically realistic, yet fast enough to implement in the pipeline. The resulting charge distortion model was developed specifically for the Gaia CCD operating mode. However, a generalized version is presented in this paper and this has already been applied in a broader context, for example to investigate the impact of radiation damage on the Euclid dark-energy mission data.

Keywords: instrumentation: detectors; methods: data analysis; methods: numerical; space vehicles; astrometry

Journal Article.  5594 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content. subscribe or login to access all content.