Journal Article

Bayesian inversion of marine controlled source electromagnetic data offshore Vancouver Island, Canada

Romina A.S. Gehrmann, Katrin Schwalenberg, Michael Riedel, George D. Spence, Volkhard Spieß and Stan E. Dosso

in Geophysical Journal International

Volume 204, issue 1, pages 21-38
ISSN: 0956-540X
Published online November 2015 | e-ISSN: 1365-246X | DOI: https://dx.doi.org/10.1093/gji/ggv437
Bayesian inversion of marine controlled source electromagnetic data offshore Vancouver Island, Canada

More Like This

Show all results sharing these subjects:

  • Geophysics
  • Oceanography and Hydrology

GO

Show Summary Details

Preview

This paper applies nonlinear Bayesian inversion to marine controlled source electromagnetic (CSEM) data collected near two sites of the Integrated Ocean Drilling Program (IODP) Expedition 311 on the northern Cascadia Margin to investigate subseafloor resistivity structure related to gas hydrate deposits and cold vents. The Cascadia margin, off the west coast of Vancouver Island, Canada, has a large accretionary prism where sediments are under pressure due to convergent plate boundary tectonics. Gas hydrate deposits and cold vent structures have previously been investigated by various geophysical methods and seabed drilling. Here, we invert time-domain CSEM data collected at Sites U1328 and U1329 of IODP Expedition 311 using Bayesian methods to derive subsurface resistivity model parameters and uncertainties. The Bayesian information criterion is applied to determine the amount of structure (number of layers in a depth-dependent model) that can be resolved by the data. The parameter space is sampled with the Metropolis–Hastings algorithm in principal-component space, utilizing parallel tempering to ensure wider and efficient sampling and convergence. Nonlinear inversion allows analysis of uncertain acquisition parameters such as time delays between receiver and transmitter clocks as well as input electrical current amplitude. Marginalizing over these instrument parameters in the inversion accounts for their contribution to the geophysical model uncertainties. One-dimensional inversion of time-domain CSEM data collected at measurement sites along a survey line allows interpretation of the subsurface resistivity structure. The data sets can be generally explained by models with 1 to 3 layers. Inversion results at U1329, at the landward edge of the gas hydrate stability zone, indicate a sediment unconformity as well as potential cold vents which were previously unknown. The resistivities generally increase upslope due to sediment erosion along the slope. Inversion results at U1328 on the middle slope suggest several vent systems close to Bullseye vent in agreement with ongoing interdisciplinary observations.

Keywords: Probability distributions; Marine electromagnetics; Continental margins: convergent; North America; Pacific Ocean

Journal Article.  11028 words.  Illustrated.

Subjects: Geophysics ; Oceanography and Hydrology

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content. subscribe or login to access all content.