Chapter

Pathophysiology of calcium pyrophosphate deposition

Abhishek Abhishek and Michael Doherty

in Oxford Textbook of Osteoarthritis and Crystal Arthropathy

Third edition

Published on behalf of Oxford University Press

Published in print October 2016 | ISBN: 9780199668847
Published online November 2016 | e-ISBN: 9780191807176 | DOI: https://dx.doi.org/10.1093/med/9780199668847.003.0049

Series: Oxford Textbooks in Rheumatology

Pathophysiology of calcium pyrophosphate deposition

Show Summary Details

Preview

Calcium pyrophosphate (CPP) dihydrate crystals form extracellularly. Their formation requires sufficient extracellular inorganic pyrophosphate (ePPi), calcium, and pro-nucleating factors. As inorganic pyrophosphate (PPi) cannot cross cell membranes passively due to its large size, ePPi results either from hydrolysis of extracellular ATP by the enzyme ectonucleotide pyrophosphatase/phosphodiesterase 1 (also known as plasma cell membrane glycoprotein 1) or from the transcellular transport of PPi by ANKH. ePPi is hydrolyzed to phosphate (Pi) by tissue non-specific alkaline phosphatase. The level of extracellular PPi and Pi is tightly regulated by several interlinked feedback mechanisms and growth factors. The relative concentration of Pi and PPi determines whether CPP or hydroxyapatite crystal is formed, with low Pi/PPi ratio resulting in CPP crystal formation, while a high Pi/PPi ratio promotes basic calcium phosphate crystal formation. CPP crystals are deposited in the cartilage matrix (preferentially in the middle layer) or in areas of chondroid metaplasia. Hypertrophic chondrocytes and specific cartilage matrix changes (e.g. high levels of dermatan sulfate and S-100 protein) are related to CPP crystal deposition and growth. CPP crystals cause inflammation by engaging with the NALP3 inflammasome, and with other components of the innate immune system, and is marked with a prolonged neutrophilic inflitrate. The pathogenesis of resolution of CPP crystal-induced inflammation is not well understood.

Chapter.  4236 words.  Illustrated.

Subjects: Rheumatology

Full text: subscription required

How to subscribe Recommend to my Librarian

Buy this work at Oxford University Press »

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content. subscribe or purchase to access all content.