Journal Article

Stochastic, stage-specific mechanisms account for the variegation of a human globin transgene

Timothy A. Graubert, Bruce A. Hug, Robin Wesselschmidt, Chih-Lin Hsieh, Thomas M. Ryan, Tim M. Townes and Timothy J. Ley

in Nucleic Acids Research

Volume 26, issue 12, pages 2849-2858
Published in print June 1998 | ISSN: 0305-1048
Published online June 1998 | e-ISSN: 1362-4962 | DOI: https://dx.doi.org/10.1093/nar/26.12.2849
Stochastic, stage-specific mechanisms account for the variegation of a human globin transgene

More Like This

Show all results sharing these subjects:

  • Chemistry
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Genetics and Genomics
  • Molecular and Cell Biology

GO

Show Summary Details

Preview

The random insertion of transgenes into the genomic DNA of mice usually leads to widely variable levels of expression in individual founder lines. To study the mechanisms that cause variegation, we designed a transgene that we expected to variegate, which consisted of a β-globin locus control region 5′ HS-2 linked in tandem to a tagged human β-globin gene (into which a Lac-Z cassette had been inserted). All tested founder lines exhibited red blood cell-specific expression, but levels of expression varied >1000-fold from the lowest to the highest expressing line. Most of the variation in levels of expression appeared to reflect differences in the percentage of cells in the peripheral blood that expressed the transgene, which ranged from 0.3% in the lowest expressing line to 88% in the highest; the level of transgene expression per cell varied no more than 10-fold from the lowest to the highest expressing line. These differences in expression levels could not be explained by the location of transgene integration, by an effect of β-galactosidase on red blood cell survival, by the half life of the β-galactosidase enzyme or by the age of the animals. The progeny of all early erythroid progenitors (BFU-E colony-forming cells) exhibited the same propensity to variegate in methylcellulose-based cultures, suggesting that the decision to variegate occurs after the BFU-E stage of erythroid differentiation. Collectively, these data suggest that variegation in levels of transgene expression are due to local, integration site-dependent phenomena that alter the probability that a transgene will be expressed in an appropriate cell; however, these local effects have a minimal impact on the transgene's activity in the cells that initiate transcription.

Journal Article.  6034 words.  Illustrated.

Subjects: Chemistry ; Biochemistry ; Bioinformatics and Computational Biology ; Genetics and Genomics ; Molecular and Cell Biology

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content. subscribe or login to access all content.